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Abstract
A controversy has arisen as to how to define quark and gluon angular mo-
mentum, important in understanding the internal structure of the nucleon.
For a review of the controversy, see [1]. I survey some of the ideas put forward
and try to assess their physical implications.

1 Introduction

Since all the controversial issues in QCD already arise in QED, I shall mainly
discuss QED for simplicity. For a theory invariant under space-time and
Lorentz transformations, from the Lagrangian, via Noether’s theorem, QED
textbooks derive a conserved energy-momentum density :

tµν ∂µt
µν = 0 (1)

and a conserved angular momentum density:

Mµνλ ∂µMµνλ = 0. (2)

I shall call these canonical : tµνcan and Mµνλ
can . The total 4-momentum is

P µ
can =

∫
d3x t 0µcan(x) (3)

and the total angular momentum is

M ij
can ≡

∫
d3xM0ij

can(x) with Jk
can =

1

2
ϵkij M

ij
can. (4)

These are the generators of translations and rotations. For fields ϕr(x):

i [P µ
can, ϕr(x)] = ∂µ ϕr(x) (5)

and
i[M ij

can , ϕr(x)] = (xi∂j − xj∂i)ϕr(x) + (Σij) s
r ϕs(x) (6)
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where (Σij) s
r is the appropriate spin matrix. One finds:

Jcan =

∫
d3xψ†γγ5ψ +

∫
d3xψ†[x× (−i∇)]ψ

+

∫
d3x (E ×A) +

∫
d3xEi[x×∇Ai]

= Scan(el) +Lcan(el) + Scan(γ) +Lcan(γ) (7)

This has the nice features that a) it looks like sum of free electron plus free
photon terms, b) the photon angular momentum is split into spin and orbital
parts (recall that we talk about gluon spin in QCD!) and c) one finds that
the total energy looks like electron energy plus photon energy plus Hint. On
the negative side, only the electron spin term is gauge invariant (GI) and all
textbooks on QED say: The angular momentum of the photon cannot be
split in a gauge invariant way into a spin part and an orbital part. Does it
matter if the individual terms are not GI?? Ji argues yes: if experimentally
measurable, the operators should be GI. I say no: what you measure are
matrix elements. The physical matrix elements must be GI. This issue is
unresolved and I will not discuss it further. But clearly one has to explain
how one can measure gluon spin!

2 The Belinfante energy-momentum and an-

gular momentum densities

One can define the Belinfante energy-momentum density which is symmetric:
tνµbel(x) = tµνbel(x), is gauge invariant and differs from the canonical one by a
spatial divergence:

t0µbel(x) = t0µcan(x) + spatial divergence (8)

It follows that

P µ
bel ≡

∫
d3x t0µbel(x) = P µ

can (9)

if the fields vanish at infinity. Similarly for the Belinfante angular momentum
density;

M0ij
bel (x) = M0ij

can(x) + spatial divergence (10)

so that
Jbel = Jcan (11)
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if the fields vanish at infinity. Does it make sense to talk about fields van-
ishing at infinity? Classical: yes. The field strength has a numerical value,
but be careful. Quantum: no. What do you mean by an operator vanishing?
I’ll return to this presently. What does Jbel look like ?

Jbel =

∫
d3xψ†γγ5ψ +

∫
d3xψ†[x× (−iD)]ψ

+

∫
d3xx× (E ×B)

= Sbel(el) +Lbel(el) + Jbel(γ) (12)

where the covariant derivative is

D = ∇− ieA. (13)

Note that each term is gauge invariant, but that Jbel(γ) is not split into spin
and orbital parts. There are several delicate questions involved in the above,
even at classical level. Applying the above to a free classical electromagnetic
field, one gets

Jcan =

∫
d3x (E ×A)︸ ︷︷ ︸
spin term

+

∫
d3xEi(x×∇Ai)︸ ︷︷ ︸

orbital term

(14)

and

Jbel =

∫
d3x [x× (E ×B)] (15)

Consider a left-circularly polarized (= positive helicity) beam propagating
along OZ. Then E, B and A all rotate in the XY plane. Consider the
component of J along OZ. The Poynting vector E×B is along OZ so that
[x × (E × B)z = 0 and thus one gets the wrong result J bel, z = 0. For the
canonical version, ∇Ax,y ∝ e(z) so the orbital term gives 0. For one photon
per unit volume the caninical spin term gives the expected result

Jcan, z per photon = ~
√
. (16)

For the quantum case, what does it mean to say an operator vanishes at
infinity? The equivalence of canonical and Belinfante momentum and angular
momentum depended on being able to neglect integrals of spatial divergences.
Usually we are interested in expectation values of these operators i.e their
forward matrix elements. For these it may be possible to justify neglecting
the contribution at infinity.
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2.1 Spatial divergence of a local operator

A local operator O(x) is defined at one space-time point and must satisfy
the law of translation i.e.

eia·PO(x)e−ia·P = O(x+ a). (17)

For the spatial divergence of a local operator we have

⟨p′ | ∂jO(x) |p ⟩ =
∂

∂xj
⟨p′ |O(x) |p ⟩ = ∂

∂xj
⟨p′|e−ix·PO(0) eix·P |p ⟩

=

[
∂

∂xj
e−ix·(p−p′)

]
⟨p′|O(0)|p ⟩ = i(p′j − pj)⟨p′ |O(0) |p ⟩ e−ix·(p−p′) (18)

Therefore as p′ → p

⟨p | ∂jO(x) |p ⟩ = 0 if ⟨p |O(0) |p ⟩ is non-singular. (19)

2.2 Spatial divergence of a compound operator

In the angular momentum case the spatial divergence involves an operator
of the form xO(x). While this is defined at one space-time point it is not a
local operator. To see this suppose that Q(x) = xO(x) is a local operator.
Then

Q(x) = e−ix·PQ(0) eix·P = 0 for all x, since Q(0) = 0 (20)

It is then much more difficult to show that one can neglect the expectation
value of the spatial divergence of a compound operator. It can be done, but
requires use of localised wave packets, as demonstrated by Shore and White.
Because of possible dangers, I’ll use the notation:

P µ
bel ∼ P µ

can and Jbel ∼ Jcan (21)

when operators differ by a spatial divergence. It is crucially important to
note that if

Jcan = Jcan(el) + Jcan(γ) and Jbel = Jbel(el) + Jbel(γ) (22)

then
Jbel(el) ̸∼Jcan(el) and Jbel(γ) ̸∼Jcan(γ) (23)

because these individually do not differ by a spatial divergence. Analogous
statements hold for QCD. Hence we can no longer talk about J(quark)
and J(gluon). We must specify which scheme we are using for J and for
momentum P . Note that this is no worse than the realization that for PDFs
we must specify the factorization scheme: q(x)MS, q(x)MS , q(x)DIS.
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3 The controversy

Given that, in QCD , ∆G(x) is measurable, Chen, Lu, Sun, Wang and Gold-
man (Chen et al) [2] insist that it must be possible to split the photon
angular momentum into a spin part and an orbital part in a GI way !! They
put A = Aphys +Apure with

∇.Aphys = 0 ∇×Apure = 0 (24)

(often called the transverse A⊥ and longitudinal A∥ parts respectively).
Adding a spatial divergence to Jcan they get

Jchen =

∫
d3xψ†γγ5ψ +

∫
d3xψ†[x× (−iDpure)]ψ

+

∫
d3x (E ×Aphys) +

∫
d3xEi[x×∇Ai

phys]

= Sch(el) +Lch(el) + Sch(γ) +Lch(γ) (25)

where Dµ = ∂µ − ieAµ
pure. Under a gauge transformation:

Apure → Apure +∇Λ Aphys → Aphys (26)

so each term in Jchen is indeed GI. Are all textbooks of past 50 years therefore
wrong? No! Aphys is not a normal local field. It is non-local.

Aphys = A− 1

∇2
∇(∇ ·A) (27)

( Recall that 1
∇2f(x) ≡ 1

4π

∫
d3x′ f(x′)

|x−x′| . ) What does this actually mean
physically? Since Chen et al. is GI, we can choose a gauge Apure = 0 i.e.
Aphys = A which implies that ∇.A = 0, which is the Coulomb gauge! Thus

Jchen ≡ Jcan|Coulomb Gauge (28)

so Chen et al. is a GI Extension of the Canonical case in the Coulomb gauge.
It involves non-local fields and Aµ does not transform as a 4-vector under
Lorentz transformations. The physical content is exactly the same as in the
canonical case in the Coulomb gauge.
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4 Further developments

Wakamatsu [3] proposed an elegant covariant generalization of Chen et al..
He actually has 2 versions. I only have time for Wakamatsu II, but Waka-
matsu I is an interesting variant in which a “potential angular momentum”
term is moved from the photon to the electron angular momentum. Split

Aµ = Aµ
phys + Aµ

pure with F µν
pure = 0. (29)

Now Wakamatsu does not give a specific formula for Aµ
pure, and Lorcé [4] has

stressed that there exist Stueckelberg transformations

Aµ
pure → Aµ

pure+∂
µC(x) Aµ

phys → Aµ
phys−∂

µC(x) any C(x) (30)

which are not gauge transformations since Aµ → Aµ, implying that there
are an infinite number of possible Aµ

pure. This can be seen easily: in QED,
Aµ

pure = ∂µ Λ(x) for any Λ ; in QCDAµ
pure = U−1∂µ U for any SU(3)matrixU .

Thus Wakamatsu II is actually an infinite family of schemes and the physical
content will depend upon the choice of Aµ

pure. Suppose we uniquely specify
the scheme JF

wakII by fixing Aµ
pure via

Aµ
pure|F = F (Aµ) (31)

where F is some given function. Since the scheme is gauge invariant, choose
the gauge which makes Aµ

pure|F = 0. Call it “Gauge F”. Then

Aµ
phys = Aµ|Gauge F (32)

and from the expression for JwakII one sees that

JF
wakII = Jcan|Gauge F (33)

Thus the family of schemes Wakamatsu II is identical to the canonical scheme
in various choices of gauge.
Hatta gave a precise concrete example of Aµ

pure, i.e. a specific choice of the
function F (Aµ) and

Aµ
pure|Hatta = 0 (34)

corresponds to the lightcone gauge A+ = 0.

Thus JHatta = Jcan|GaugeA+=0

There have been several other papers which I have no time to discuss: Bashin-
sky and Jaffe; Stoilov; Cho, Ge and Zhang; Zhang and Pak; Zhou and Huang;
Xiang-Song Chen; Lorcé. For access to this literature see [4].
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5 Which scheme should you love and trust?

I think there are only two fundamental schemes: Canonical and Belinfante.
Belinfante is favoured by Ji and collaborators. Pros: each term is gauge
invariant; nucleon expectation values can be related to GPDs (for the longi-
tudinal polarized case see Ji [5]; for the transverse case see Leader [6]).
Cons: photon (gluon) angular momentum is not split into spin and orbital
parts; operators do not generate rotations.
My preference: a seductively desirable criterion would be that momentum
should be the generator of translations; angular momentum should be the
generator of rotations. But there is no way to guarantee this. Beware! If
someone produces an expression for, say, Jel and claims

[J i
el , J

j
el] = iϵijkJ

k
el (35)

then ask them kindly to prove this. It is impossible! In an interacting
theory Jel = Jel(t) because the quanta exchange momentum and angular
momentum. To evaluate the commutator you would have to completely
solve the field theory! So:

5.1 My minimal criterion for favouring a scheme

At equal times the operators should satisfy

i [P j
el(t), ψr(t,x)] = ∂j ψr(t,x)

i[M ij
el (t) , ψr(t,x)] = (xi∂j − xj∂i)ψr(t,x) + (Σij) s

r ψs(t,x) (36)

This leads to the canonical scheme (favoured by me and by Jaffe-Manohar ).
Pros: at equal times the operators are the generators of rotations; the photon
(gluon) angular momentum is split into spin and orbital parts; the operators
have the same form as for free field case; the operators in the gauge A+ = 0
can be related to PDFs and GPDs; it gets the right answer for a circularly
polarized classical plane light wave. Cons: the terms are not gauge invariant.

5.2 A key issue: the polarized gluon density ∆G(x)

∆G(x) is measurable, so ∆G(x) must be gauge invariant. In what sense does
it correspond to the spin of the gluon? In my view the parton model is a
picture of QCD in the gauge A+ = 0, so all is well since one can show that

∆G(x) = ⟨ P̂ � Scan(gluon) ⟩|GaugeA+=0 (37)

where ⟨..⟩ means expectation value in a longitudinally polarized nucleon.
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6 Summary

• There are, I believe, only two fundamental schemes: Canonical and
Belinfante

• Though not gauge invariant, I prefer the Canonical because the oper-
ators generate rotations, at least at equal times

• All the new gauge invariant schemes involve non-local fields and cor-
respond either to the Canonical version viewed in a particular choice
of gauge, or to a mixed scheme in which, however, the nucleon matrix
elements agree with the Canonical ones in the A+ = 0 gauge. Thus the
new schemes, in my opinion, do not contain any new physics.
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